oh BOLD where art thou? Evidence for a “mm-scale” match between intracortical and fMRI measures.

A frequently discussed problem with functional magnetic resonance imaging is that we don’t really understand how the hemodynamic ‘activations’ measured by the technique relate to actual neuronal phenomenon. This is because fMRI measures the Blood-Oxygenation-Level Dependent (BOLD) signal, a complex vascular response to neuronal activity. As such, neuroscientists can easily get worried about all sorts of non-neural contributions to the BOLD signal, such as subjects gasping for air, pulse-related motion artefacts, and other generally uninteresting effects. We can even start to worry that out in the lab, the BOLD signal may not actually measure any particular aspect of neuronal activity, but rather some overly diluted, spatially unconstrained filter that simply lacks the key information for understanding brain processes.

Given that we generally use fMRI over neurophysiological methods (e.g. M/EEG) when we want to say something about the precise spatial generators of a cognitive process, addressing these ambiguities is of utmost importance. Accordingly a variety of recent papers have utilized multi-modal techniques, for example combining optogenetics, direct recordings, and FMRI, to assess particularly which kinds of neural events contribute to alterations in the BOLD signal and it’s spatial (mis)localization. Now a paper published today in Neuroimage addresses this question by combining high resolution 7-tesla fMRI with Electrocorticography (ECoG) to determine the spatial overlap of finger-specific somatomotor representations captured by the measures. Starting from the title’s claim that “BOLD matches neuronal activity at the mm-scale”, we can already be sure this paper will generate a great deal of interest.

From Siero et al (In Press)

As shown above, the authors managed to record high resolution (1.5mm) fMRI in 2 subjects implanted with 23 x 11mm intracranial electrode arrays during a simple finger-tapping task. Motor responses from each finger were recorded and used to generate somatotopic maps of brain responses specific to each finger. This analysis was repeated in both ECoG and fMRI, which were then spatially co-registered to one another so the authors could directly compare the spatial overlap between the two methods. What they found appears at first glance, to be quite impressive:
From Siero et al (In Press)

Here you can see the color-coded t-maps for the BOLD activations to each finger (top panel, A), the differential contrast contour maps for the ECOG (middle panel, B), and the maximum activation foci for both measures with respect to the electrode grid (bottom panel, C), in two individual subjects. Comparing the spatial maps for both the index and thumb suggests a rather strong consistency both in terms of the topology of each effect and the location of their foci. Interestingly the little finger measurements seem somewhat more displaced, although similar topographic features can be seen in both. Siero and colleagues further compute the spatial correlation (Spearman’s R) across measures for each individual finger, finding an average correlation of .54, with a range between .31-.81, a moderately high degree of overlap between the measures. Finally the optimal amount of shift needed to reduce spatial difference between the measures was computed and found to be between 1-3.1 millimetres, suggesting a slight systematic bias between ECoG and fMRI foci.

Are ‘We the BOLD’ ready to breakout the champagne and get back to scanning in comfort, spatial anxieties at ease? While this is certainly a promising result, suggesting that the BOLD signal indeed captures functionally relevant neuronal parameters with reasonable spatial accuracy, it should be noted that the result is based on a very-best-case scenario, and that a considerable degree of unique spatial variance remains for the two methods. The data presented by Siero and colleagues have undergone a number of crucial pre-processing steps that are likely to influence their results: the high degree of spatial resolution, the manual removal of draining veins, the restriction of their analysis to grey-matter voxels only, and the lack of spatial smoothing all render generalizing from these results to the standard 3-tesla whole brain pipeline difficult. Indeed, even under these best-case criteria, the results still indicate up to 3mm of systematic bias in the fMRI results. Though we can be glad the bias was systematic and not random– 3mm is still quite a lot in the brain. On this point, the authors note that the stability of the bias may point towards a systematic miss-registration of the ECoG and FMRI data and/or possible rigid-body deformations introduced by the implantation of the electrodes), issues that could be addressed in future studies. Ultimately it remains to be seen whether similar reliability can be obtained for less robust paradigms than finger wagging, obtained in the standard sub-optimal imaging scenarios. But for now I’m happy to let fMRI have its day in the sun, give or take a few millimeters.

Siero, J. C. W., Hermes, D., Hoogduin, H., Luijten, P. R., Ramsey, N. F., & Petridou, N. (2014). BOLD matches neuronal activity at the mm scale: A combined 7T fMRI and ECoG study in human sensorimotor cortex. NeuroImage. doi:10.1016/j.neuroimage.2014.07.002