fMRI study of Shamans tripping out to phat drumbeats

Every now and then, i’m browsing RSS on the tube commute and come across a study that makes me laugh out loud. This of course results in me receiving lots of ‘tuts’ from my co-commuters. Anyhow, the latest such entry to the world of cognitive neuroscience is a study examining brain response to drum beats in shamanic practitioners. Michael Hove and colleagues of the Max Planck Institute in Leipzig set out to study “Perceptual Decoupling During an Absorptive State of Consciousness” using functional magnetic resonance imaging (fMRI). What exactly does that mean? Apparently: looking at how brain connectivity in ‘experienced shamanic practitioners’ changes when they listen to  rhythmic drumming. Hove and colleagues explain that across a variety of cultures, ‘quasi-isochronous drumming’ is used to induce ‘trance states’. If you’ve ever been dancing around a drum circle in the full moon light, or tranced out to shpongle in your living room, I guess you get the feeling right?

Anyway, Hove et al recruited 15 participants who were trained in  “core shamanism,” described as:

“a system of techniques developed and codified by Michael Harner (1990) based on cross-cultural commonalities among shamanic traditions. Participants were recruited through the German-language newsletter of the Foundation of Shamanic Studies and by word of mouth.”

They then played these participants rhythmic isochronous drumming (trance condition) versus drumming with a more regular timing. In what might be the greatest use of a Likert scale of all time, Participants rated if [they] “would describe your experience as a deep shamanic journey?” (1 = not at all; 7 = very much so)”, and indeed described the trance condition as more well, trancey. Hove and colleagues then used a fairly standard connectivity analysis, examining eigenvector centrality differences between the two drumming conditions, as well as seed-based functional connectivity:

trance.PNG

seed.PNG

Hove et al report that compared to the non-trance conditions, the posterior/dorsal cingulate, insula, and auditory brainstem regions become more ‘hublike’, as indicated by a higher overall degree centrality of these regions. Further, they experienced stronger functionally connectivity with the posterior cingulate cortex. I’ll let Hove and colleagues explain what to make of this:

“In sum, shamanic trance involved cooperation of brain networks associated with internal thought and cognitive control, as well as a dampening of sensory processing. This network configuration could enable an extended internal train of thought wherein integration and moments of insight can occur. Previous neuroscience work on trance is scant, but these results indicate that successful induction of a shamanic trance involves a reconfiguration of connectivity between brain regions that is consistent across individuals and thus cannot be dismissed as an empty ritual.”

Ultimately the authors conclusion seems to be that these brain connectivity differences show that, if nothing else, something must be ‘really going on’ in shamanic states. To be honest, i’m not really sure anyone disagreed with that to begin with. Collectively I can’t critique this study without thinking of early (and ongoing) meditation research, where esoteric monks are placed in scanners to show that ‘something really is going on’ in meditation. This argument to me seems to rely on a folk-psychological misunderstanding of how the brain works. Even in placebo conditioning, a typical example of a ‘mental effect’, we know of course that changes in the brain are responsible. Every experience (regardless how complex) has some neural correlate. The trick is to relate these neural factors to behavioral ones in a way that actually advances our understanding of the mechanisms and experiences that generate them. The difficulty with these kinds of studies is that all we can do is perform reverse inference to try and interpret what is going on; the authors conclusion about changes in sensory processing is a clear example of this. What do changes in brain activity actually tell us about trance (and other esoteric) states ? Certainly they don’t reveal any particular mechanism or phenomenological quality, without being coupled to some meaningful understanding of the states themselves. As a clear example, we’re surely pushing reductionism to its limit by asking participants to rate a self-described transcendent state using a unidirectional likert scale? The authors do cite Francisco Varela (a pioneer of neurophenemonological methods), but don’t seem to further consider these limitations or possible future directions.

Overall, I don’t want to seem overly critical of this amusing study. Certainly shamanic traditions are a deeply important part of human cultural history, and understanding how they impact us emotionally, cognitively, and neurologically is a valuable goal. For what amounts to a small pilot study, the protocols seem fairly standard from a neuroscience standpoint. I’m less certain about who these ‘shamans’ actually are, in terms of what their practice actually constitutes, or how to think about the supposed ‘trance states’, but I suppose ‘something interesting’ was definitely going on. The trick is knowing exactly what that ‘something’ is.

Future studies might thus benefit from a better direct characterization of esoteric states and the cultural practices that generate them, perhaps through collaboration with an anthropologist and/or the application of phenemonological and psychophysical methods. For now however, i’ll just have to head to my local drum circle and vibe out the answers to these questions.

Hove MJ, Stelzer J, Nierhaus T, Thiel SD, Gundlach C, Margulies DS, Van Dijk KRA, Turner R, Keller PE, Merker B (2016) Brain Network Reconfiguration and Perceptual Decoupling During an Absorptive State of Consciousness. Cerebral Cortex 26:3116–3124.

 

A Needle in the Connectome: Neural ‘Fingerprint’ Identifies Individuals with ~93% accuracy

Much like we picture ourselves, we tend to assume that each individual brain is a bit of a unique snowflake. When running a brain imaging experiment it is common for participants or students to excitedly ask what can be revealed specifically about them given their data. Usually, we have to give a disappointing answer – not all that much, as neuroscientists typically throw this information away to get at average activation profiles set in ‘standard’ space. Now a new study published today in Nature Neuroscience suggests that our brains do indeed contain a kind of person-specific fingerprint, hidden within the functional connectome. Perhaps even more interesting, the study suggests that particular neural networks (e.g. frontoparietal and default mode) contribute the greatest amount of unique information to your ‘neuro-profile’ and also predict individual differences in fluid intelligence.

To do so lead author Emily Finn and colleagues at Yale University analysed repeated sets of functional magnetic resonance imaging (fMRI) data from 128 subjects over 6 different sessions (2 rest, 4 task), derived from the Human Connectome Project. After dividing each participant’s brain data into 268 nodes (a technique known as “parcellation”), Emily and colleagues constructed matrices of the pairwise correlation between all nodes. These correlation matrices (below, figure 1b), which encode the connectome or connectivity map for each participant, were then used in a permutation based decoding procedure to determine how accurately a participant’s connectivity pattern could be identified from the rest. This involved taking a vector of edge values (connection strengths) from a participant in the training set and correlating it with a similar vector sampled randomly with replacement from the test set (i.e. testing whether one participant’s data correlated with another’s). Pairs with the highest correlation where then labelled “1” to indicate that the algorithm assigned a matching identity between a particular train-test pair. The results of this process were then compared to a similar one in which both pairs and subject identity were randomly permuted.

Finn et al's method for identifying subjects from their connectomes.
Finn et al’s method for identifying subjects from their connectomes.

At first glance, the results are impressive:

Identification was performed using the whole-brain connectivity matrix (268 nodes; 35,778 edges), with no a priori network definitions. The success rate was 117/126 (92.9%) and 119/126 (94.4%) based on a target-database of Rest1-Rest2 and the reverse Rest2-Rest1, respectively. The success rate ranged from 68/126 (54.0%) to 110/126 (87.3%) with other database and target pairs, including rest-to-task and task-to-task comparisons.

This is a striking result – not only could identity be decoded from one resting state scan to another, but the identification also worked when going from rest to a variety of tasks and vice versa. Although classification accuracy dropped when moving between different tasks, these results were still highly significant when compared to the random shuffle, which only achieved a 5% success rate. Overall this suggests that inter-individual patterns in connectivity are highly reproducible regardless of the context from which they are obtained.

The authors then go on to perform a variety of crucial control analyses. For example, one immediate worry is that that the high identification might be driven by head motion, which strongly influences functional connectivity and is likely to show strong within-subject correlation. Another concern might be that the accuracy is driven primarily by anatomical rather than functional features. The authors test both of these alternative hypotheses, first by applying the same decoding approach to an expanded set of root-mean square motion parameters and second by testing if classification accuracy decreased as the data were increasingly smoothed (which should eliminate or reduce the contribution of anatomical features). Here the results were also encouraging: motion was totally unable to predict identity, resulting in less than 5% accuracy, and classification accuracy remained essentially the same across smoothing kernels. The authors further tested the contribution of their parcellation scheme to the more common and coarse-grained Yeo 8-network solution. This revealed that the coarser network division seemed to decrease accuracy, particularly for the fronto-parietal network, a decrease that was seemingly driven by increased reliability of the diagonal elements of the inter-subject matrix (which encode the intra-subject correlation). The authors suggest this may reflect the need for higher spatial precision to delineate individual patterns of fronto-parietal connectivity. Although this intepretation seems sensible, I do have to wonder if it conflicts with their smoothing-based control analysis. The authors also looked at how well they could identify an individual based on the variability of the BOLD signal in each region and found that although this was also significant, it showed a systematic decrease in accuracy compared to the connectomic approach. This suggests that although at least some of what makes an individual unique can be found in activity alone, connectivity data is needed for a more complete fingerprint. In a final control analysis (figure 2c below), training simultaneously on multiple data sets (for example a resting state and a task, to control inherent differences in signal length) further increased accuracy to as high as 100% in some cases.

Finn et al; networks showing most and least individuality and contributing factors.
Finn et al; networks showing most and least individuality and contributing factors. Interesting to note that sensory areas are highly common across subjects whereas fronto-parietal and mid-line show the greatest individuality!

Having established the robustness of their connectome fingerprints, Finn and colleagues then examined how much each individual cortical node contributed to the identification accuracy. This analysis revealed a particularly interesting result; frontal-parietal and midline (‘default mode’) networks showed the highest contribution (above, figure 2a), whereas sensory areas appeared to not contribute at all. This compliments their finding that the more coarse grained Yeo parcellation greatly reduced the contribution of these networks to classificaiton accuracy. Further still, Finn and colleagues linked the contributions of these networks to behavior, examining how strongly each network fingerprint predicted an overall index of fluid intelligence (g-factor). Again they found that fronto-parietal and default mode nodes were the most predictive of inter-individual differences in behaviour (in opposite directions, although I’d hesitate to interpret the sign of this finding given the global signal regression).

So what does this all mean? For starters this is a powerful demonstration of the rich individual information that can be gleaned from combining connectome analyses with high-volume data collection. The authors not only showed that resting state networks are highly stable and individual within subjects, but that these signatures can be used to delineate the way the brain responds to tasks and even behaviour. Not only is the study well powered, but the authors clearly worked hard to generalize their results across a variety of datasets while controlling for quite a few important confounds. While previous studies have reported similar findings in structural and functional data, I’m not aware of any this generalisable or specific. The task-rest signature alone confirms that both measures reflect a common neural architecture, an important finding. I could be a little concerned about other vasculature or breath-related confounds; the authors do remove such nuisance variables though, so this may not be a serious concern (though I am am not convinced their use of global signal regression to control these variables is adequate). These minor concerns none-withstanding, I found the network-specific results particularly interesting; although previous studies indicate that functional and structural heterogeneity greatly increases along the fronto-parietal axis, this study is the first demonstration to my knowledge of the extremely high predictive power embedded within those differences. It is interesting to wonder how much of this stability is important for the higher-order functions supported by these networks – indeed it seems intuitive that self-awareness, social cognition, and cognitive control depend upon acquired experiences that are highly individual. The authors conclude by suggesting that future studies may evaluate classification accuracy within an individual over many time points, raising the interesting question: Can you identify who I am tomorrow by how my brain connects today? Or am I “here today, gone tomorrow”?

Only time (and connectomics) may tell…


 

edit:

thanks to Kate Mills for pointing out this interesting PLOS ONE paper from a year ago (cited by Finn et al), that used similar methods and also found high classification accuracy, albeit with a smaller sample and fewer controls:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111048

 

edit2:

It seems there was a slight mistake in my understanding of the methods – see this useful comment by lead author Emily Finn for clarification:

http://neuroconscience.com/2015/10/12/a-needle-in-the-connectome-neural-fingerprint-identifies-individuals-with-93-accuracy/#comment-36506


corrections? comments? want to yell at me for being dumb? Let me know in the comments or on twitter @neuroconscience!

[VIDEO] Mind-wandering, meta-cognition, and the function of consciousness

Hey everyone! I recently did an interview for Neuro.TV covering some of my past and current research on mind-wandering, meta-cognition, and conscious awareness. The discussion is very long and covers quite a diversity of topics, so I thought i’d give a little overview here with links to specific times.

For the first 15 minutes, we focus on general research in meta-cognition, and topics like the functional and evolutionary signifigance of metacognition:

We then begin to move onto specific discussion about mind-wandering, around 16:00:

I like our discussion as we quickly get beyond the overly simplistic idea of ‘mind-wandering’ as just attentional failure, reviewing the many ways in which it can drive or support meta-cognitive awareness. We also of course briefly discuss the ‘default mode network’ and the (misleading) idea that there are ‘task positive’ and ‘task negative’ networks in the brain, around 19:00:

Lots of interesting discussion there, in which I try to roughly synthesize some of the overlap and ambiguity between mind-wandering, meta-cognition, and their neural correlates.

Around 36:00 we start discussing my experiment on mind-wandering variability and error awareness:

A great experience in all, and hopefully an interesting video for some! Be sure to support the kickstarter for the next season of Neuro.TV!

JF also has a detailed annotation on the brainfacts blog for the episode:

“0:07″ Introduction
“0:50″ What is cognition?
“4:45″ Metacognition and its relation to confidence.
“10:49″ What is the difference between cognition and metacognition?
“14:07″ Confidence in our memories; does it qualify as metacognition?
“18:34″ Technical challenges in studying mind-wandering scientifically and related brain areas.
“25:00″ Overlap between the brain regions involved in social interactions and those known as the default-mode network.
“29:17″ Why does cognition evolve?
“35:51″ Task-unrelated thoughts and errors in performance.
“50:53″ Tricks to focus on tasks while allowing some amount of mind-wandering.

Mind-wandering and metacognition: variation between internal and external thought predicts improved error awareness

Yesterday I published my first paper on mind-wandering and metacognition, with Jonny Smallwood, Antoine Lutz, and collaborators. This was a fun project for me as I spent much of my PhD exhaustively reading the literature on mind-wandering and default mode activity, resulting in a lot of intense debate a my research center. When we had Jonny over as an opponent at my PhD defense, the chance to collaborate was simply too good to pass up. Mind-wandering is super interesting precisely because we do it so often. One of my favourite anecdotes comes from around the time I was arguing heavily for the role of the default mode in spontaneous cognition to some very skeptical colleagues.  The next day while waiting to cross the street, one such colleague rode up next to me on his bicycle and joked, “are you thinking about the default mode?” And indeed I was – meta-mind-wandering!

One thing that has really bothered me about much of the mind-wandering literature is how frequently it is presented as attention = good, mind-wandering = bad. Can you imagine how unpleasant it would be if we never mind-wandered? Just picture trying to solve a difficult task while being totally 100% focused. This kind of hyper-locking attention can easily become pathological, preventing us from altering course when our behaviour goes awry or when something internal needs to be adjusted. Mind-wandering serves many positive purposes, from stimulating our imaginations, to motivating us in boring situations with internal rewards (boring task… “ahhhh remember that nice mojito you had on the beach last year?”). Yet we largely see papers exploring the costs – mood deficits, cognitive control failure, and so on. In the meditation literature this has even been taken up to form the misguided idea that meditation should reduce or eliminate mind-wandering (even though there is almost zero evidence to this effect…)

Sometimes our theories end up reflecting our methodological apparatus, to the extent that they may not fully capture reality. I think this is part of what has happened with mind-wandering, which was originally defined in relation to difficult (and boring) attention tasks. Worse, mind-wandering is usually operationalized as a dichotomous state (“offtask” vs “ontask”) when a little introspection seems to strongly suggest it is much more of a fuzzy, dynamic transition between meta-cognitive and sensory processes. By studying mind-wandering just as the ‘amount’ (or mean) number of times you were “offtask”, we’re taking the stream of consciousness and acting as if the ‘depth’ at one point in the river is the entire story – but what about flow rate, tidal patterns, fishies, and all the dynamic variability that define the river? My idea was that one simple way get at this is by looking at the within-subject variability of mind-wandering, rather than just the overall mean “rate”.  In this way we could get some idea of the extent to which a person’s mind-wandering was fluctuating over time, rather than just categorising these events dichotomously.

The EAT task used in my study, with thought probes.
The EAT task used in my study, with thought probes.

To do this, we combined a classical meta-cognitive response inhibition paradigm, the “error awareness task” (pictured above), with standard interleaved “thought-probes” asking participants to rate on a scale of 1-7 the “subjective frequency” of task-unrelated thoughts in the task interval prior to the probe.  We then examined the relationship between the ability to perform the task or “stop accuracy” and each participant’s mean task-unrelated thought (TUT). Here we expected to replicate the well-established relationship between TUTs and attention decrements (after all, it’s difficult to inhibit your behaviour if you are thinking about the hunky babe you saw at the beach last year!). We further examined if the standard deviation of TUT (TUT variability) within each participant would predict error monitoring, reflecting a relationship between metacognition and increased fluctuation between internal and external cognition (after all, isn’t that kind of the point of metacognition?). Of course for specificity and completeness, we conducted each multiple regression analysis with the contra-variable as control predictors. Here is the key finding from the paper:

Regression analysis of TUT, TUT variability, stop accuracy, and error awareness.
Regression analysis of TUT, TUT variability, stop accuracy, and error awareness.

As you can see in the bottom right, we clearly replicated the relationship of increased overall TUT predicting poorer stop performance. Individuals who report an overall high intensity/frequency of mind-wandering unsurprisingly commit more errors. What was really interesting, however, was that the more variable a participants’ mind-wandering, the greater error-monitoring capacity (top left). This suggests that individuals who show more fluctuation between internally and externally oriented attention may be able to better enjoy the benefits of mind-wandering while simultaneously limiting its costs. Of course, these are only individual differences (i.e. correlations) and should be treated as highly preliminary. It is possible for example that participants who use more of the TUT scale have higher meta-cognitive ability in general, rather than the two variables being causally linked in the way we suggest.  We are careful to raise these and other limitations in the paper, but I do think this finding is a nice first step.

To ‘probe’ a bit further we looked at the BOLD responses to correct stops, and the parametric correlation of task-related BOLD with the TUT ratings:

Activations during correct stop trials.
Activations during correct stop trials.
Deactivations to stop trials (blue) and parametric correlation with TUT reports (red)
Deactivations to stop trials (blue) and parametric correlation with TUT reports (red)

As you can see, correct stop trials elicit a rather canonical activation pattern on the motor-inhibition and salience networks, with concurrent deactivations in visual cortex and the default mode network (second figure, blue blobs). I think of this pattern a bit like when the brain receives the ‘stop signal’ it goes, (a la Picard): “FULL STOP, MAIN VIEWER OFF, FIRE THE PHOTON TORPEDOS!”, launching into full response recovery mode. Interestingly, while we replicated the finding of medial-prefrontal co-variation with TUTS (second figure, red blob), this area was substantially more rostral than the stop-related deactivations, supporting previous findings of some degree of functional segregation between the inhibitory and mind-wandering related components of the DMN.

Finally, when examining the Aware > Unaware errors contrast, we replicated the typical salience network activations (mid-cingulate and anterior insula). Interestingly we also found strong bilateral activations in an area of the inferior parietal cortex also considered to be a part of the default mode. This finding further strengthens the link between mind-wandering and metacognition, indicating that the salience and default mode network may work in concert during conscious error awareness:

Activations to Aware > Unaware errors contrast.
Activations to Aware > Unaware errors contrast.

In all, this was a very valuable and fun study for me. As a PhD student being able to replicate the function of classic “executive, salience, and default mode” ‘resting state’ networks with a basic task was a great experience, helping me place some confidence in these labels.  I was also able to combine a classical behavioral metacognition task with some introspective thought probes, and show that they do indeed contain valuable information about task performance and related brain processes. Importantly though, we showed that the ‘content’ of the mind-wandering reports doesn’t tell the whole story of spontaneous cognition. In the future I would like to explore this idea further, perhaps by taking a time series approach to probe the dynamics of mind-wandering, using a simple continuous feedback device that participants could use throughout an experiment. In the affect literature such devices have been used to probe the dynamics of valence-arousal when participants view naturalistic movies, and I believe such an approach could reveal even greater granularity in how the experience of mind-wandering (and it’s fluctuation) interacts with cognition. Our findings suggest that the relationship between mind-wandering and task performance may be more nuanced than mere antagonism, an important finding I hope to explore in future research.

Citation: Allen M, Smallwood J, Christensen J, Gramm D, Rasmussen B, Jensen CG, Roepstorff A and Lutz A (2013) The balanced mind: the variability of task-unrelated thoughts predicts error monitoringFront. Hum. Neurosci7:743. doi: 10.3389/fnhum.2013.00743