fMRI study of Shamans tripping out to phat drumbeats

Every now and then, i’m browsing RSS on the tube commute and come across a study that makes me laugh out loud. This of course results in me receiving lots of ‘tuts’ from my co-commuters. Anyhow, the latest such entry to the world of cognitive neuroscience is a study examining brain response to drum beats in shamanic practitioners. Michael Hove and colleagues of the Max Planck Institute in Leipzig set out to study “Perceptual Decoupling During an Absorptive State of Consciousness” using functional magnetic resonance imaging (fMRI). What exactly does that mean? Apparently: looking at how brain connectivity in ‘experienced shamanic practitioners’ changes when they listen to  rhythmic drumming. Hove and colleagues explain that across a variety of cultures, ‘quasi-isochronous drumming’ is used to induce ‘trance states’. If you’ve ever been dancing around a drum circle in the full moon light, or tranced out to shpongle in your living room, I guess you get the feeling right?

Anyway, Hove et al recruited 15 participants who were trained in  “core shamanism,” described as:

“a system of techniques developed and codified by Michael Harner (1990) based on cross-cultural commonalities among shamanic traditions. Participants were recruited through the German-language newsletter of the Foundation of Shamanic Studies and by word of mouth.”

They then played these participants rhythmic isochronous drumming (trance condition) versus drumming with a more regular timing. In what might be the greatest use of a Likert scale of all time, Participants rated if [they] “would describe your experience as a deep shamanic journey?” (1 = not at all; 7 = very much so)”, and indeed described the trance condition as more well, trancey. Hove and colleagues then used a fairly standard connectivity analysis, examining eigenvector centrality differences between the two drumming conditions, as well as seed-based functional connectivity:

trance.PNG

seed.PNG

Hove et al report that compared to the non-trance conditions, the posterior/dorsal cingulate, insula, and auditory brainstem regions become more ‘hublike’, as indicated by a higher overall degree centrality of these regions. Further, they experienced stronger functionally connectivity with the posterior cingulate cortex. I’ll let Hove and colleagues explain what to make of this:

“In sum, shamanic trance involved cooperation of brain networks associated with internal thought and cognitive control, as well as a dampening of sensory processing. This network configuration could enable an extended internal train of thought wherein integration and moments of insight can occur. Previous neuroscience work on trance is scant, but these results indicate that successful induction of a shamanic trance involves a reconfiguration of connectivity between brain regions that is consistent across individuals and thus cannot be dismissed as an empty ritual.”

Ultimately the authors conclusion seems to be that these brain connectivity differences show that, if nothing else, something must be ‘really going on’ in shamanic states. To be honest, i’m not really sure anyone disagreed with that to begin with. Collectively I can’t critique this study without thinking of early (and ongoing) meditation research, where esoteric monks are placed in scanners to show that ‘something really is going on’ in meditation. This argument to me seems to rely on a folk-psychological misunderstanding of how the brain works. Even in placebo conditioning, a typical example of a ‘mental effect’, we know of course that changes in the brain are responsible. Every experience (regardless how complex) has some neural correlate. The trick is to relate these neural factors to behavioral ones in a way that actually advances our understanding of the mechanisms and experiences that generate them. The difficulty with these kinds of studies is that all we can do is perform reverse inference to try and interpret what is going on; the authors conclusion about changes in sensory processing is a clear example of this. What do changes in brain activity actually tell us about trance (and other esoteric) states ? Certainly they don’t reveal any particular mechanism or phenomenological quality, without being coupled to some meaningful understanding of the states themselves. As a clear example, we’re surely pushing reductionism to its limit by asking participants to rate a self-described transcendent state using a unidirectional likert scale? The authors do cite Francisco Varela (a pioneer of neurophenemonological methods), but don’t seem to further consider these limitations or possible future directions.

Overall, I don’t want to seem overly critical of this amusing study. Certainly shamanic traditions are a deeply important part of human cultural history, and understanding how they impact us emotionally, cognitively, and neurologically is a valuable goal. For what amounts to a small pilot study, the protocols seem fairly standard from a neuroscience standpoint. I’m less certain about who these ‘shamans’ actually are, in terms of what their practice actually constitutes, or how to think about the supposed ‘trance states’, but I suppose ‘something interesting’ was definitely going on. The trick is knowing exactly what that ‘something’ is.

Future studies might thus benefit from a better direct characterization of esoteric states and the cultural practices that generate them, perhaps through collaboration with an anthropologist and/or the application of phenemonological and psychophysical methods. For now however, i’ll just have to head to my local drum circle and vibe out the answers to these questions.

Hove MJ, Stelzer J, Nierhaus T, Thiel SD, Gundlach C, Margulies DS, Van Dijk KRA, Turner R, Keller PE, Merker B (2016) Brain Network Reconfiguration and Perceptual Decoupling During an Absorptive State of Consciousness. Cerebral Cortex 26:3116–3124.

 

Mind-wandering and metacognition: variation between internal and external thought predicts improved error awareness

Yesterday I published my first paper on mind-wandering and metacognition, with Jonny Smallwood, Antoine Lutz, and collaborators. This was a fun project for me as I spent much of my PhD exhaustively reading the literature on mind-wandering and default mode activity, resulting in a lot of intense debate a my research center. When we had Jonny over as an opponent at my PhD defense, the chance to collaborate was simply too good to pass up. Mind-wandering is super interesting precisely because we do it so often. One of my favourite anecdotes comes from around the time I was arguing heavily for the role of the default mode in spontaneous cognition to some very skeptical colleagues.  The next day while waiting to cross the street, one such colleague rode up next to me on his bicycle and joked, “are you thinking about the default mode?” And indeed I was – meta-mind-wandering!

One thing that has really bothered me about much of the mind-wandering literature is how frequently it is presented as attention = good, mind-wandering = bad. Can you imagine how unpleasant it would be if we never mind-wandered? Just picture trying to solve a difficult task while being totally 100% focused. This kind of hyper-locking attention can easily become pathological, preventing us from altering course when our behaviour goes awry or when something internal needs to be adjusted. Mind-wandering serves many positive purposes, from stimulating our imaginations, to motivating us in boring situations with internal rewards (boring task… “ahhhh remember that nice mojito you had on the beach last year?”). Yet we largely see papers exploring the costs – mood deficits, cognitive control failure, and so on. In the meditation literature this has even been taken up to form the misguided idea that meditation should reduce or eliminate mind-wandering (even though there is almost zero evidence to this effect…)

Sometimes our theories end up reflecting our methodological apparatus, to the extent that they may not fully capture reality. I think this is part of what has happened with mind-wandering, which was originally defined in relation to difficult (and boring) attention tasks. Worse, mind-wandering is usually operationalized as a dichotomous state (“offtask” vs “ontask”) when a little introspection seems to strongly suggest it is much more of a fuzzy, dynamic transition between meta-cognitive and sensory processes. By studying mind-wandering just as the ‘amount’ (or mean) number of times you were “offtask”, we’re taking the stream of consciousness and acting as if the ‘depth’ at one point in the river is the entire story – but what about flow rate, tidal patterns, fishies, and all the dynamic variability that define the river? My idea was that one simple way get at this is by looking at the within-subject variability of mind-wandering, rather than just the overall mean “rate”.  In this way we could get some idea of the extent to which a person’s mind-wandering was fluctuating over time, rather than just categorising these events dichotomously.

The EAT task used in my study, with thought probes.
The EAT task used in my study, with thought probes.

To do this, we combined a classical meta-cognitive response inhibition paradigm, the “error awareness task” (pictured above), with standard interleaved “thought-probes” asking participants to rate on a scale of 1-7 the “subjective frequency” of task-unrelated thoughts in the task interval prior to the probe.  We then examined the relationship between the ability to perform the task or “stop accuracy” and each participant’s mean task-unrelated thought (TUT). Here we expected to replicate the well-established relationship between TUTs and attention decrements (after all, it’s difficult to inhibit your behaviour if you are thinking about the hunky babe you saw at the beach last year!). We further examined if the standard deviation of TUT (TUT variability) within each participant would predict error monitoring, reflecting a relationship between metacognition and increased fluctuation between internal and external cognition (after all, isn’t that kind of the point of metacognition?). Of course for specificity and completeness, we conducted each multiple regression analysis with the contra-variable as control predictors. Here is the key finding from the paper:

Regression analysis of TUT, TUT variability, stop accuracy, and error awareness.
Regression analysis of TUT, TUT variability, stop accuracy, and error awareness.

As you can see in the bottom right, we clearly replicated the relationship of increased overall TUT predicting poorer stop performance. Individuals who report an overall high intensity/frequency of mind-wandering unsurprisingly commit more errors. What was really interesting, however, was that the more variable a participants’ mind-wandering, the greater error-monitoring capacity (top left). This suggests that individuals who show more fluctuation between internally and externally oriented attention may be able to better enjoy the benefits of mind-wandering while simultaneously limiting its costs. Of course, these are only individual differences (i.e. correlations) and should be treated as highly preliminary. It is possible for example that participants who use more of the TUT scale have higher meta-cognitive ability in general, rather than the two variables being causally linked in the way we suggest.  We are careful to raise these and other limitations in the paper, but I do think this finding is a nice first step.

To ‘probe’ a bit further we looked at the BOLD responses to correct stops, and the parametric correlation of task-related BOLD with the TUT ratings:

Activations during correct stop trials.
Activations during correct stop trials.
Deactivations to stop trials (blue) and parametric correlation with TUT reports (red)
Deactivations to stop trials (blue) and parametric correlation with TUT reports (red)

As you can see, correct stop trials elicit a rather canonical activation pattern on the motor-inhibition and salience networks, with concurrent deactivations in visual cortex and the default mode network (second figure, blue blobs). I think of this pattern a bit like when the brain receives the ‘stop signal’ it goes, (a la Picard): “FULL STOP, MAIN VIEWER OFF, FIRE THE PHOTON TORPEDOS!”, launching into full response recovery mode. Interestingly, while we replicated the finding of medial-prefrontal co-variation with TUTS (second figure, red blob), this area was substantially more rostral than the stop-related deactivations, supporting previous findings of some degree of functional segregation between the inhibitory and mind-wandering related components of the DMN.

Finally, when examining the Aware > Unaware errors contrast, we replicated the typical salience network activations (mid-cingulate and anterior insula). Interestingly we also found strong bilateral activations in an area of the inferior parietal cortex also considered to be a part of the default mode. This finding further strengthens the link between mind-wandering and metacognition, indicating that the salience and default mode network may work in concert during conscious error awareness:

Activations to Aware > Unaware errors contrast.
Activations to Aware > Unaware errors contrast.

In all, this was a very valuable and fun study for me. As a PhD student being able to replicate the function of classic “executive, salience, and default mode” ‘resting state’ networks with a basic task was a great experience, helping me place some confidence in these labels.  I was also able to combine a classical behavioral metacognition task with some introspective thought probes, and show that they do indeed contain valuable information about task performance and related brain processes. Importantly though, we showed that the ‘content’ of the mind-wandering reports doesn’t tell the whole story of spontaneous cognition. In the future I would like to explore this idea further, perhaps by taking a time series approach to probe the dynamics of mind-wandering, using a simple continuous feedback device that participants could use throughout an experiment. In the affect literature such devices have been used to probe the dynamics of valence-arousal when participants view naturalistic movies, and I believe such an approach could reveal even greater granularity in how the experience of mind-wandering (and it’s fluctuation) interacts with cognition. Our findings suggest that the relationship between mind-wandering and task performance may be more nuanced than mere antagonism, an important finding I hope to explore in future research.

Citation: Allen M, Smallwood J, Christensen J, Gramm D, Rasmussen B, Jensen CG, Roepstorff A and Lutz A (2013) The balanced mind: the variability of task-unrelated thoughts predicts error monitoringFront. Hum. Neurosci7:743. doi: 10.3389/fnhum.2013.00743

How to tell the difference between embodied cognition and everything else

Psychscientists have a great post up proposing an acid test for genuine embodied cognition versus the all to popular “x body part alters y internal process” trope. Seriously- check it out!

http://psychsciencenotes.blogspot.co.uk/2012/03/field-spotters-guide-to-embodied.html

Embodied cognition: A field spotter’s guide

Question 1: Does the paper claim to be an example of embodied cognition?

If yes, it is probably not embodied cognition. I’ve never been entirely sure why this is, but work that is actually about embodiment rarely describes itself as such. I think it’s because embodiment is the label that’s emerged to describe work from a variety of disciplines that, at the time, wasn’t about pushing any coherent agenda, and so the work often didn’t know at the time that it was embodied cognition.

This of course is less true now embodiment is such a hot topic, so what else do I look for?

Question 2:  What is the key psychological process involved in solving the task?

Embodied cognition is, remember, the radical hypothesis that we solve tasks using resources spanning our brain, bodies and environments coupled together via perception. If the research you are reading is primarily investigating a process that doesn’t extend beyond the brain (e.g. a mental number line, or a thought about the future) then it isn’t embodiment. For example, in the leaning to the left example, the suggestion was that we estimate the magnitude of things by placing them on a mental number line, and that the way we are leaning makes different parts of that number line easier to access than others (e.g. leaning left makes the smaller numbers more accessible). The key process is the mental number line, which resides solely in the brain and is hypothesised to exist to solve a problem (estimating the magnitude of things) in a manner that doesn’t require anything other than a computing brain. This study is therefore not about embodiment.

Question 3: What is the embodied bit doing?

There’s a related question that comes up, then. In papers that aren’t actually doing embodied cognition, the body and the environment only have minor, subordinate roles. Leaning to the left merely biases our access to the mental number line; thinking about the future has a minor effect on bodily sway. The important bit is still the mental stuff – the cognitive process presumably implemented solely in the brain. If the non-neural or non-cognitive elements are simply being allowed to tweak some underlying mental process, rather than play a critical role in solving the task, it’s not embodiment.

The 2011 Mind & Life Summer Research Institute: Are Monks Better at Introspection?

As I’m sitting in the JFK airport waiting for my flight to Iceland, I can’t help but let my mind wander over the curious events of this year’s summer research institute (SRI). The Mind & Life Institute, an organization dedicated to the integration and development of what they’ve dubbed “contemplative science”, holds the SRI each summer to bring together clinicians, neuroscientists, scholars, and contemplatives (mostly monks) in a format that is half conference and half meditation retreat. The summer research institute is always a ton of fun, and a great place to further one’s understanding of Buddhism & meditation while sharing valuable research insights.

I was lucky enough to receive a Varela award for my work in meta-cognition and mental training and so this was my second year attending. I chose to take a slightly different approach from my first visit, when I basically followed the program and did whatever the M&L thought was the best use of my time. This meant lots of meditation- more than two hours per day not including the whole-day, silent “mini-retreat”. While I still practiced this year, I felt less obliged to do the full program, and I’m glad I took this route as it provided me a somewhat more detached, almost outsider view of the spectacle that is the Mind & Life SRI.

When I say spectacle, it’s important to understand how unconventional of a conference setting the SRI really is. Each year dozens of ambitious neuroscientists and clinicians meet with dozens of Buddhist monks and western “mindfulness” instructors. The initial feeling is one of severe culture clash; ambitious young scholars who can hardly wait to mention their Ivy League affiliations meet with the austere and almost ascetic approach of traditional Buddhist philosophy. In some cases it almost feels like a race to “out-mindful” one another, as folks put on a great show of piety in order to fit into the mood of the event. It can be a bit jarring to oscillate between the supposed tranquility and selflessness of mindfulness with the unabashed ambition of these highly talented and motivated folk- at least until things settle down a bit.

Nonetheless, the overall atmosphere of the SRI is one of serenity and scholarship. It’s an extremely fun, stimulating event, rich with amazingly talented yoga and meditation instructors and attended by the top researchers within the field. What follows is thus not meant as any kind of attack on the overall mission of the M&L. Indeed, I’m more than grateful to the institute for carrying on at least some form of Francisco Varela’s vision for cognitive science, and of course for supporting my own meditation research. With that being said, we turn to the question at hand: are monks objectively better at introspection? The answer for nearly everyone at the SRI appear to be “yes”, regardless of the scarcity of data suggesting this to be the case.

Enactivism and Francisco Varela

Francisco Varela, founder of EnactivismBefore I can really get into this issue, I need to briefly review what exactly “enactivism” is and how it relates to the SRI. The Mind & Life institute was co-founded by Francisco Varela, a Chilean biologist and neuroscientist who is often credited with the birth and success of embodied and enactive cognitive science. Varela had a profound impact on scientists, philosophers, and cognitive scientists and is a central influence in my own theoretical work. Varela’s essential thesis was outlined in his book “The Embodied Mind”, in which Varela, Thompson, and Rosch, attempted to outline a new paradigm for the study of mind. In the book, Varela et al rely on examples from cross-cultural psychology, continental phenomenology, Buddhism, and cognitive science to argue that cognition (and mind) is essentially an embodied, enactive phenomenon. The book has since spawned a generation of researchers dedicated in some way to the idea that cognition is not essentially, or at least foundationally, computational and representational in form.

I don’t here intend to get into the roots of what enactivism is; for the present it suffices to say that enactivism as envisioned by Varela involved a dedication to the “middle way” in which idealism-objectivism duality is collapsed in favor of a dynamical non-representational account of cognition and the world. I very much favor this view and try to use it productively in my own research. Varela argued throughout his life that cognition was not essentially an internal, info-processing kind of phenomenon, but rather an emergent and intricately interwoven entity that arose from our history of structural coupling with the world.  He further argued that cognitive science needed to develop a first-person methodology if it was to fully explain the rich panorama of human consciousness.

A simpler way to put this is to say that Varela argued persuasively that minds are not computers “parachuted into an objective world” and that cognition is not about sucking up impoverished information for representation in a subjective format. While Varela invoked much of Buddhist ontology, including concepts of “emptiness” and “inter-relatedness”, to develop his account continental phenomenologists like Heidegger and Merleau-Ponty also heavily inspired his vision of 4th wave cognitive science.  At the SRI there is little mention of this; most scholars are unaware of the continental literature or that phenomenology is not equal to introspection. Indeed I had to cringe when one to-be-unnamed young scientist declared a particular spinal pathway to be “the central pathway for embodiment”.

This is a stark misunderstanding of just what embodiment means, and I would argue renders it a relatively trivial add-on to the information processing paradigm- something most enactivists would like to strongly resist. I politely pointed the gentleman to the example work of Ulric Neisser, who argued for the ecological embodied self, in which the structure of the face is said to pre-structure human experience in particular ways, i.e. we typically experience ourselves as moving through the world toward a central fovea-centered point. Embodiment is an external, or pre-noetic structuring of the mind; it follows no nervous pathway but rather structures the possibilities of the nervous system and mind. I hope he follows that reference down the rabbit hole of the full possibilities of embodiment- the least of which is body-as-extra-module.

Still, I certainly couldn’t blame this particular scientist for his mis-understanding; nearly everyone at the SRI is totally unfamiliar with externalist/phenomenal perspectives, which is a sad state of affairs for a generation of scientists being supported by grants in Varela’s name. Regardless of Varela’s vision for cognitive science, his thesis regarding introspectionism is certainly running strong: first-person methodologies are the hot topic of the SRI, and nearly everyone agreed that by studying contemplative practitioners’ subjective reports, we’d gain some special insight into the mind.  Bracketing whether introspection is what Varela really meant by neurophenomenology (I don’t think it is- phenomenology is not introspection) we are brought to the central question: are Buddhist practitioners expert introspectionists?

Expertise and Introspectionism

Expert introspectionists?Varela certainly believed this to some degree. It’s not entirely clear to me that the bulk of Varela’s work summates to this maxim, but it’s at least certainly true that in papers such as his seminal “Neurophenomenology: a methodological remedy to the hard problem?” he argued that a careful first-person methodology could reap great benefits in this arena. Varela later followed up this theoretical thesis with his now well-known experiment conducted with then PhD student and my current mentor Antoine Lutz.

While I won’t reproduce the details of this experiment at length here, Lutz and Varela demonstrated that it was in fact possible to inform and constrain electrophysiological measurements through the collection and systemization of first-person reports. It’s worth noting here that the participants in this experiment were every day folks, not meditation practitioners, and that Lutz & Varela developed a special method to integrate the reports rather than taking them simply at face value. In fact, while Varela did often suggest that we might through careful contemplation and collaboration with the Buddhist tradition refine first person methodologies and gain insight into the “hard-problem”, he never did complete these experiments with practitioners, a fact that can likely be attributed to his pre-mature death at the hand of aggressive hepatitis.

Regardless of Varela’s own work, it’s fascinating to me that at today’s SRI, if there is one thing nearly everyone seems to explicitly agree on, it’s that meditation practitioners have some kind of privileged access to experience. I can’t count how many discussions seemed to simply assume the truth of this, regardless of the fact that almost no empirical research has demonstrated any kind of increased meta-cognitive capacity or accuracy in adept contemplatives.

While Antoine and I are in fact running experiments dedicated to answering this question, the fact remains that this research is largely exploratory and without strong empirical leads to work from. While I do believe that some level of meditation practice can provide greater reliability and accuracy in meta-cognitive reports, I don’t see any reason to value the reports of contemplative practitioners above and beyond those of any other particular niche group. If I want to know what it’s like to experience baseball, I’m probably going to ask some professional baseball players and not a Buddhist monk. At several points during the SRI I tried to express just this sentiment; that studying Buddhist monks gives us a greater insight into what-it-is-like to be a monk and not much else. I’m not sure if I succeeded, but I’d like to think I planted a few seeds of doubt.

There are several reasons for this. First, I part with Varela where he assumes that the Buddhist tradition and/or “Buddhist Psychology” have particularly valuable insights (for example, emptiness) that can’t be gleaned from western approaches. It might, but I don’t buy into the idea that the Buddhist tradition is its own kind of scientific approach to the mind; it’s not- it’s religion. For me the middle way means a lifelong commitment to a kind of meta-physical agnosticism, and I refuse to believe that any human tradition has a vast advantage over another. This was never more apparent than during a particularly controversial talk by John Dunne, a Harvard contemplative scholar, whose keynote was dedicated to getting scientists like myself to go beyond the traditional texts and veridical reports of practitioners and to instead engage in what he called “trialogue” in order to discover “what it is practitioners are really doing”. At the end of his talk one of the Dalai Lama’s lead monks actually took great offense, scolding John for “misleading the youth with his western academic approach”. The entire debacle was a perfect case-in-point demonstration of John’s talk; one cannot simply take the word of highly religious practitioners as some kind of veridical statement about the world.

This isn’t to say that we can’t learn a great deal about experience, and the mind, through meditation and careful introspection. I think at an early level it’s enough to just sit with ones breath and suspend beliefs about what exactly experience is. I do believe that in our modern lives; we spend precious little time with the body and our minds, simply observing what arises in a non-partial way.  I agree with Sogyal Rinpoche that we are at times overly dis-embodied and away from ourselves. Yet this practice isn’t unique to Buddhism; the phenomenological reduction comes from Husserl and is a practice developed throughout continental phenomenology. I do think that Buddhism has developed some particularly interesting techniques to aid this process, such as Vipassana and compassion-meditation, that can and will shed insights for the cognitive scientist interested in experience, and I hope that my own work will demonstrate as much.

But this is a very different claim from the one that says monastic Buddhists have a particularly special access to experience. At the end of the day I’m going to hedge my bets with the critical, empirical, and dialectical approach of cognitive science. In fact, I think there may be good reasons to suspect that high-level practitioners are inappropriate participants for “neurophenomenology”. Take for example, the excellent and controversial talk given this year by Willoughby Britton, in which she described how contemplative science had been too quick to sweep under the rug a vast array of negative “side-effects” of advanced practice. These effects included hallucination, de-personalization, pain, and extreme terror. This makes a good deal of sense; advanced meditation practice is less impartial phenomenology and more a rigorous ritualized mental practice embedded in a strong religious context. I believe that across cultures many religions share techniques, often utilizing rhythmic breathing, body postures, and intense belief priming to engender an almost psychedelic state in the practitioner.

What does this mean for cognitive science and enactivism? First, it means we need to respect cultural boundaries and not rush to put one cultural practice on top of the explanatory totem pole. This doesn’t mean cognitive scientists shouldn’t be paying attention to experience, or even practicing and studying meditation, but we have to be careful not to ignore the normativity inherent in any ritualized culture. Embracing this basic realization takes seriously individual and cultural differences in consciousness, something I’ve argued for and believe is essential for the future of 4th wave cognitive science. Neurophenomenology, among other things, should be about recognizing and describing the normativity in our own practices, not importing those of another culture wholesale. I think that this is in line with much of what Varela wrote, and luckily, the tools to do just this are richly provided by the continental phenomenological tradition.

I believe that by carefully bracketing meta-physical and normative concepts, and investigating the vast multitude of phenomenal experience in its full multi-cultural variety, we can begin to shed light on the mind-brain relationship in a meaningful and not strictly reductive fashion. Indeed, in answering the question “are monks expert introspectionists” I think we should carefully question the normative thesis underlying that hypothesis- what exactly constitutes “good” experiential reports? Perhaps by taking a long view on Buddhism and cognitive science, we can begin to truly take the middle way to experience, where we view all experiential reports as equally valid statements regarding some kind of subjective state. The question then becomes primarily longitudinal, i.e. do experiential reports demonstrate a kind of stability or consistency over time, how do trends in experiential reports relate to neural traits and states, and how do these phenomena interact with the particular cultural practices within which they are embedded. For me, this is the central contribution of enactive cognitive science and the best way forward for neurophenomenology.

Disclaimer: I am in no way suggesting enactivists cannot or should not study advanced buddhism if that is what they find interesting and useful. I of course realize that the M&L SRI is a very particular kind of meeting, and that many enactive cognitive scientists can and do work along the lines I am suggesting. My claim is regarding best practices for the core of 4th wave cognitive science, not the fringe. I greatly value the work done by the M&L and found the SRI to be an amazingly fruitful experience.

Google Wave for Scholarly Co-authorship: excerpt from Neuroplasticity and Consciousness Abstract

Gary Williams and I are working together on a paper investigating the consciousness and neuroplasticity. We’re using Google wave for this collaboration, and I must say it is an excellent co-authorship tool. There is nothing quite so neat as watching your ideas flow and meld together in real time. There are now new built in document templates that make these kinds of projects a blast. As an added bonus, all edits are identified and tracked in real time, letting you keep easy track of who wrote what. One of the most suprising things to come out of this collaboration is the newness of the thoughts. Whatever it is we end up arguing, it is definetely not reducible to the sum of it’s parts. As a teaser, I thought I’d post a thread from the wave I made this morning. This is basically just me rambling on about consciousness and plasticity after reading the results of our wave. I wish I could post the movie of our edits, but that will have to wait for the paper’s submission.

I have an idea I want to work in that was provoked by this paper:
http://www.jneurosci.org/cgi/content/abstract/30/18/6205

Somewhere in here I still feel a nagging paradox, but I can’t seem to put my finger on it. Maybe I’m simply trying to explain something I don’t have an explanation for. I’m not sure. Consider this a list of thoughts that may or may not have any relationship to the kind of account we want to make here.

They basically show that different synthesthetic experiences have different neural correlates in the structural brain matter. I think it would be nice to tie our paper to the (likely) focus of the other papers; the idea of changing qualia / changing NCCs. Maybe we can argue that, due to neural plasticity, we should not expect ‘neural representations’ for sensory experience between any two adults to be identical; rather we should expect that every individual develops their own unique representational qualia that are partially ineffable. Then we can argue that it this is precisely why we must rely on narrative scaffolding to make sense of the world; it is only through practice with narrative, engendered by frontal plasticity, that we can understand the statistical similarities between our qualia and others. Something is not quite right in this account though… and our abstract is basically fine as is.

So, I have my own unique qualia that are constantly changing- my qualia and NCCs are in dynamical flux with one another. However, my embodiment pre-configures my sensory experience to have certain common qualities across the species. Narrative explanations of the world are grounded in capturing this intersubjectivity; they are linguistic representations of individual sense impressions woven together by cultural practices and schema. What we want to say is that, I am able to learn about the world through narrative practice precisely because I am able to map my own unique sensory representations onto others.

I guess that last part of what I said is still weak, but it seems like this could be a good element to explore in the abstract. It keeps us from being too far away from the angle of the call though, maybe. I can’t figure out exactly what I want to say. There are a few elements:

  • Narratives are co-created, coherent, shareable, complex representations of the world that encode temporality, meaning, and intersubjectivity.
  • I’m able to learn about these representations of the world through narrative practice; by mapping my own unique dynamic sensory experience to the sensory and folk psychological narratives of others.
  • Narrative encodes sensory experience in ways that transcend the limits of personal qualia; they are offloaded and are no longer dynamic in the same way.
  • Sensory experience is in constant flux and can be thrown out of alignment with narrative, as in the case of most psychopathy.
  • I need some way to structure this flux; narrative is intersubjective and it provides second order qualia??
  • Narrative must be plastic as it is always growing; the relations between events, experiences, and sensory representations must always be shifting. Today I may really enjoy the smell of flowers and all the things that come with them (memory of a past girlfriend, my enjoyment of things that smell sweet, the association I have with hunger). But tommorow I might get buried alive in some flowers; now my sensory representation for flowers is going to have all new associations. I may attend to a completely different set of salient factors; I might find that the smell now reminds me of a grave, that I remember my old girlfriend was a nasty bitch, and that I’m allergic to sweet things. This must be reflected in the connective weights of the sensory representations; the overall connectivity map has been altered because a node (the flower node) has been drastically altered by a contra-narrative sensory trauma.
  • I think this is a crucial account and it helps explain the role of the default mode in consciousness. On this account, the DMN is the mechanism driving reflective, spontaneous narrativization of the world. These oscillations are akin to the constant labeling and scanning of my sensory experience. That they in sleep probably indicates that this process is highly automatic and involved in memory formation. As introspective thoughts begin to gain coherency and collude together, they gain greater roles in my over all conscious self-narrative.
  • So I think this is what I want to say: our pre-frontal default mode is system is in constant flux. The nodes are all plastic, and so is the pattern of activations between them. This area is fundamentally concerned with reflective-self relatedness and probably develops through childhood interaction. Further, there is an important role of control here. I think that a primary function of social-constructive brain areas is in the control of action. Early societies developed complex narrative rule systems precisely to control and organize group action. This allowed us to transcend simple brute force and begin to coordinate action and to specialize in various agencies. The medial prefrontal cortex, the central node, fundementally invoked in acts of social cognition and narrative comprehension, has massive reciprocal connectivity to limbic areas, and also pre-frontal areas concerned with reward and economic decision making.
  • We need a plastic default mode precisely to allow for the kinds of radical enculturation we go through during development. It is quite difficult to teach an infant, born with the same basic equipment as a caveman, the intricacies of mathematics and philosophy. Clearly narrative comprehension requires a massive amount of learning; we must learn all of the complex cultural nuances that define us as modern humans.
  • Maybe sensory motor coupling and resonance allow for the simulation of precise spatiotemporal activity patterns. This intrinsic activity is like a constant ‘reading out’ of the dynamic sensory representations that are being constantly updated, through neuroplasticity; whatever the totality of the connection weights, that is my conscious narrative of my experience.
  • Back to the issue of control. It’s clear to me that the prefrontal default system is highly sensitive to intersubjective or social information/cues. I think there is really something here about offloading intentions, which are relatively weak constructions, into the group, where they can be collectively acted upon (like in the drug addict/rehab example). So maybe one role of my narration system is simply to vocalize my sensory experience (I’m craving drugs. I can’t stop craving drugs) so that others can collectively act on them.

Well there you have it. I have a feeling this is going to be a great paper. We’re going to try and flip the whole debate on it’s head and argue for a central role of plasticity in embodied and narrative consciousness. It’s great fun to be working with Gary again; his mastery of philosophy of mind and phenomenology are quite fearsome, and we’ve been developing these ideas forever. I’ll be sure to post updates from GWave as the project progresses.

Snorkeling ’the shallows’: what’s the cognitive trade-off in internet behavior?

I am quite eager to comment on the recent explosion of e-commentary regarding Nicolas Carr’s new book. Bloggers have already done an excellent job summarizing the response to Carr’s argument. Further, Clay Shirky and Jonah Lehrer have both argued convincingly that there’s not much new about this sort of reasoning. I’ve also argued along these lines, using the example of language itself as a radical departure from pre-linguistic living. Did our predecessors worry about their brains as they learned to represent the world with odd noises and symbols?

Surely they did not. And yet we can also be sure that the brain underwent a massive revolution following the acquisition of language. Chomsky’s linguistics would of course obscure this fact, preferring us to believe that our linguistic abilities are the amalgation of things we already possessed: vision, problem solving, auditory and acoustic control. I’m not going to spend too much time arguing against the modularist view of cognition however; chances are if you are here reading this, you are already pretty convinced that the brain changes in response to cultural adaptations.

It is worth sketching out a stock Chomskyian response however. Strict nativists, like Chomsky, hold that our language abilities are the product of an innate grammar module. Although typically agnostic about the exact source of this module (it could have been a genetic mutation for example), nativists argue that plasticity of the brain has no potential other than slightly enhancing or decreasing our existing abilities. You get a language module, a cognition module, and so on, and you don’t have much choice as to how you use that schema or what it does. The development of anguage on this view wasn’t something radically new that changed the brain of its users but rather a novel adaptation of things we already and still have.

To drive home the point, it’s not suprising that notable nativist Stephen Pinker is quoted as simply not buying the ‘changing our brains’ hypothesis:

“As someone who believes both in human nature and in timeless standards of logic and evidence, I’m skeptical of the common claim that the Internet is changing the way we think. Electronic media aren’t going to revamp the brain’s mechanisms of information processing, nor will they supersede modus ponens or Bayes’ theorem. Claims that the Internet is changing human thought are propelled by a number of forces: the pressure on pundits to announce that this or that “changes everything”; a superficial conception of what “thinking” is that conflates content with process; the neophobic mindset that “if young people do something that I don’t do, the culture is declining.” But I don’t think the claims stand up to scrutiny.”

Pinker makes some good points- I agree that a lot of hype is driven by the kinds of thinking he mentions. Yet, I do not at all agree that electronic media cannot and will not revamp our mechanisms for information processing. In contrast to the nativist account, I think we’ve better reason than ever to suspect that the relation between brain and cognition is not 1:1 but rather dynamic, evolving with us as we develop new tools that stimulate our brains in unique and interesting ways.

The development of language massively altered the functioning of our brain. Given the ability to represent the world externally, we no longer needed to rely on perceptual mechanisms in the same way. Our ability to discriminate amongst various types of plant, or sounds, is clearly sub-par to that of our non-linguistic brethren. And so we come full circle. The things we do change our brains. And it is the case that our brains are incredibly economical. We know for example that only hours after limb amputation, our somatosensory neurons invade the dormant cells, reassigning them rather than letting them die off. The brain is quite massively plastic- Nicolas Carr certainly gets that much right.

Perhaps the best way to approach this question is with an excerpt from social media. I recently asked of my fellow tweeps,

To which an astute follower replied:

Now, I do realize that this is really the central question in the ‘shallows’ debate. Moving from the basic fact that our brains are quite plastic, we all readily accept that we’re becoming the subject of some very intense stimulation. Most social media, or general internet users, shift rapidly from task to task, tweet to tweet. In my own work flow, I may open dozens and dozens of tabs, searching for that one paper or quote that can propel me to a new insight. Sometimes I get confused and forget what I was doing. Yet none of this interferes at all with my ‘deep thinking’. Eventually I go home and read a fantastic sci-fi book like Snowcrash. My imagination of the book is just as good as ever; and I can’t wait to get online and start discussing it. So where is the trade-off?

So there must be a trade-off, right? Tape a kitten’s eyes shut and its visual cortex is re-assigned to other sensory modalities. The brain is a nasty economist, and if we’re stimulating one new thing we must be losing something old. Yet what did we lose with language? Perhaps we lost some vestigial abilities to sense and smell. Yet we gained the power of the sonnet, the persuasion of rhetoric, the imagination of narrative, the ability to travel to the moon and murder the earth.

In the end, I’m just not sure it’s the right kind of stimulation. We’re not going to lose our ability to read in fact, I think I can make an extremely tight argument against the specific hypothesis that the internet robs us of our ability to deep-think. Deep thinking is itself a controversial topic. What exactly do we mean by it? Am I deep thinking if I spend all day shifting between 9 million tasks? Nicolas Carr says no, but how can he be sure those 9 million tasks are not converging around a central creative point?

I believe, contrary to Carr, that internet and social media surfing is a unique form of self stimulation and expression. By interacting together in the millions through networks like twitter and facebook, we’re building a cognitive apparatus that, like language, does not function entirely within the brain. By increasing access to information and the customizability of that access, we’re ensuring that millions of users have access to all kinds of thought-provoking information. In his book, Carr says things like ‘on the internet, there’s no time for deep thought. it’s go go go’. But that is only one particular usage pattern, and it ignores ample research suggesting that posts online may in fact be more reflective and honest than in-person utterances (I promise, I am going to do a lit review post soon!)

Today’s internet user doesn’t have to conform to whatever Carr thinks is the right kind of deep-thought. Rather, we can ‘skim the shallows’ of twitter and facebook for impressions, interactions, and opinions. When I read a researcher, I no longer have to spend years attending conferences to get a personal feel for them. I can instead look at their wikipedia, read the discussion page, see what’s being said on twitter. In short, skimming the shallows makes me better able to choose the topics I want to investigate deeply, and lets me learn about them in whatever temporal pattern I like. Youtube with a side of wikipedia and blog posts? Yes please. It’s a multi-modal whole brain experience that isn’t likely to conform to ‘on/off’ dichotomies. Sure, something may be sacrificed, but it may not be. It might be that digital technology has enough of the old (language, vision, motivation) plus enough of the new that it just might constitute or bring about radically new forms of cognition. These will undoubtably change or cognitive style, perhaps obsoleting Pinker’s Bayesian mechanisms in favor of new digitally referential ones.

So I don’t have an answer for you yet ToddStark. I do know however, that we’re going to have to take a long hard look at the research review by Carr. Further, it seems quite clear that there can be no one-sided view of digital media. It’s not anymore intrinsically good or bad than language. Language can be used to destroy nations just as it can tell a little girl a thoughtful bed time story. If we’re to quick to make up our minds about what internet-cognition is doing to our plastic little brains, we might miss the forest for the trees. The digital media revolution gives us the chance to learn just what happens in the brain when its’ got a shiny new tool. We don’t know the exact nature of the stimulation, and finding out is going to require a look at all the evidence, for and against. Further, it’s a gross oversimplification to talk about internet behavior as ‘shallow’ or ‘deep’. Research on usage and usability tells us this; there are many ways to use the internet, and some of them probably get us thinking much deeper than others.